

WBS 2.2 Liquid Scintillator

June 4, 2007

Stuart Mufson Indiana University

Liquid Scintillator for NOvA

- NOvA's fiducial mass is dominated by its active detector medium – liquid scintillator
- NOvA is very large so it needs a very large mass of liquid scintillator

The NOvA detector requires 12.6 kilotons of liquid scintillator

- Requirements: the NOvA liquid scintillator must
 - be affordable
 - meet light yield and attenuation length requirements set by NOvA science
 - have a production and delivery schedule that matches the NOvA far detector construction
 - be delivered to the NOvA far detector with assurances that its quality keeps construction on schedule
 - minimize environmental hazards

Liquid Scintillator Organization Chart WBS 2.2

Scintillator Light Production

Pseudocumene [1,2,4-trimethylbenzene] is the primary scintillant that is excited by traversing ionizing particles; de-excitation produces UV photons

PPO [2,5-diphenyloxazole] and bisMSB [1,4di(methylstyryl)benzene] shift the UV photons to the visible range

Scintillator Light Production

Monte Carlo calculations of the spectrum of photons absorbed by the fiber for the baseline NOvA liquid scintillator in a prototype NOvA PVC cell in which the plastic is loaded with anatase TiO₂ and the light is collected by a 0.7mm WLS fiber

Liquid Scintillator for NOvA

Technical design requirements for NOvA liquid scintillator

	Technical Design Requirements
Light Output	Light Yield (NLS)/Light Yield (BC-517P) ≥ 0.75
Attenuation Length	AttnLen(NLS) $\geq 2.2 \text{m} @ 420 \text{ nm}$
Conductivity	≥ 100 picosiemens/meter

- Scintillator with: (1) light output equivalent to 75% Saint-Goban (Bicron) BC-517P and (2) attenuation length of 2.2 m meets the technical performance specification of 20 p.e. per mip for a particle at the far end of a NOvA cell.
- Technical requirement for conductivity taken from the recommendations by the National Fire Protection Association (NFPA) -- safe practices dictate that scintillator be made "semi-conducting", or "possessing a conductivity > 100 ps/meter".

Liquid Scintillator for NOvA

Baseline Liquid Scintillator

"Baseline Fluors"

component purpose		mass fraction	volume	tot mass		
			(gal)	(kg)		
mineral oil	solvent	94.4%	94.4% 3,710,764 11,9			
pseudocumene	pseudocumenescintillantPPOwaveshifter #1		209,246	693,863		
PPO				15,269		
<i>bis-MSB</i> waveshifter #2		0.002%		214		
Stadis-425	antistatic agent	0.0003%		38		
tocopherol (Vit.E)	antioxidant	0.0010%		126		
Total		100.0%	3,920,010	12,649,158		

Detector: volume

mass

@70F

The advantages of this mixture include:

- stability
- low cost
- low toxicity
- high flashpoint
- low potential as an environmental hazard
- safe for WLS fiber and PVC over lifetimes exceeding this experiment

Measurement and QC Apparatus

Lovibond Tintometer -- QC transmision

NOvA Cell -- light yield

Technical Design Requirements: Mineral Oil

Liquid scintillator is mainly mineral oil.

- Four different technical grade mineral oils tested, labeled A, B, C, D.
- Attenuation length was tested in the IU Spectrometer

Attenuation length of Mineral Oils studied during R&D

Technical Design Requirements: Mineral Oil Attenuation Length

≥ 100 picosiemens/meter

Conductivity

Technical Design Requirements: Light Yield

	Technical Design Requirements						
Light Output	Light Yield (NLS)/Light Yield (BC-517P) ≥ 0.75						
Attenuation Length	AttnLen(NLS) $\geq 2.2 \text{m} @ 420 \text{ nm}$						
Conductivity	≥ 100 picosiemens/meter						

Technical Design Requirements: Pseudocumene

	Technical Design Requirement
Purity	□ 98%
specific gravity @ 60/60F	0.875 < specific gravity < 0.882
Clarity	< +25 Color Units measured on Pt-Co
	scale
Total Sulfur content	< 2.0 ppM

Pseudocumene obtained from two suppliers. They are equivalent

Technical Design Requirements: Stadis 425

- Adding 3 ppM of the anti-static agent Stadis-425 guarantees the scintillator will be semi-conducting
- At 3ppM, there is no adverse effect on the light yield.

QA/QC -- Mineral Oil Attenuation Length

Quick, simple testing with Lovibond Tintometer: Mineral Oil

Mineral Oil C meets design requirements, Mineral Oil D does not

QA/QC --Scintillator Attenuation Length

Quick, simple testing with Lovibond Tintometer

Scintillator with Mineral Oil C meets design requirements, Scintillator with Mineral Oil D does not

QA/QC -- Scintillator Composition

• The α -test is a test of scintillator composition.

The light yield in the α-test for scintillators made with the same fluor mix is mostly independent of attenuation length of the mineral oil

Liquid Scintillator Production Model

- NOvA liquid scintillator will be blended at a commercial toll blending facility in Chicagoland
- components purchased by Fermilab
- components delivered to toll blender by most costeffective means in dedicated equipment
- blended scintillator delivered to Ash River by dedicaated tanker trailers
- NOvA QC at toll blender

Liquid Scintillator Toll Blender Operations

Toll Blender Operations Mineral Oil Waveshifters Pseudocumene QC into pre-measured holding tank powders --QC into QC Fermilab blend tank Storage tank QC fluor Fluor Blending mix tank add stadis Scintillator Blending tank All stainless steel or epoxy-lined tanks QC blended Dedicated lines. scintillator hoses, & pumps Storage tank

• logistics:

- ➤ 3.9M gallons of liquid scintillator to be delivered in 24 months.
- ➤ 6 deliveries of liquid scintillator per M-F work week
- ➤ 3 day round trip: Chicago toll blender Ash River Chicago
- ➤ 12 dedicated tanker trailers required

To Ash River

Liquid Scintillator Logistics

- 3.9M gallons of liquid scintillator to be delivered over a period of 24 months.
 - ➤ with 7,000 gallon tanker trailers, 6 deliveries of liquid scintillator per M-F work week required
- logistics plan also driven by:
 - ➤ the 3 days time required for a driver to make the round trip Chicagoland (toll blender) — Ash River — Chicagoland
 - > an empty trailer available to make an immediate return
 - > no weekend driving
- 12 dedicated tanker trailers needed by this logistics plan
- logistics:
 - > 3.9M gallons of liquid scintillator to be delivered in 24 months.
 - ➤ 6 deliveries of liquid scintillator per M-F work week
 - ➤ 3 day round trip: Chicagoland (toll blender) Ash River Chicagoland
 - ➤ 12 dedicated tanker trailers required

Design Changes since the CDR

- Liquid scintillator blending will take place at a commercial toll blending facility
 - > In CDR, blending was at Fermilab
- The importance of making liquid scintillator semi-conducting has been recognized
- The tintometer has been identified as the commercial QC device that can make rapid and consistent measurements of the transmission of mineral oil, pseudocumene, and blended liquid scintillator

Cost & Schedule

- Requirement document -- TDR
- Milestones
 - Commodity POs issued
 - Commodities delivered
 - Production contracts signed
 - Production milestones
 - Delivery contracts signed
 - Delivery milestones
- 361 lines in Cost & Schedule

Manpower: WBS 2.2 Scintillator

Cost: WBS 2.2 Scintillator

WBS x.2	Estimated	Contingency		Total	
Scintillator	Cost	Estimate	Contingency	Cost	
	(AY \$M)	(AY \$M)	(%)	(AY \$M)	
Construction w indirects					
M&S	23.0	6.1	27%	29.1	
Labor¹	0.4	0.3	87%	0.7	
Construction total:	23.4	6.5	28%	29.8	
R&D					
M&S	0.1	0.0	0%	0.1	
Labor ¹	0.1	0.0	0%	0.1	
R&D total:	0.2	0.0	0%	0.2	

¹ Labor costs presented here include all project labor from Fermilab, other DOE facilities, and Universities.

Cost Drivers

- mineral oil -- \$17.2M
- pseudocumene -- \$3.0M
- waveshifters -- \$4.2M

Schedule: WBS 2.2

Nova Project
WBS x.2- Nova_Milestones_Liquid_Scintillator
Milestone Gantt Chart

Activity ID	Milestone Description	Date	FY06	FY07 Q1 Q2 Q3 Q4	FY08 Q1 Q2 Q3 Q4	FY09 Q1 Q2 Q3 Q4	FY10 Q1 Q2 Q3 Q4	FY11 Q1 Q2 Q3 Q4	FY12 Q1 Q2 Q3 Q4	FY13
2.2 Liquid So	intillator									
2.2.1.4	Mineral oil PO issued	27Dec07			_					
2.2.2.4	Pseudocumene PO issued	27Dec07			<u> </u>					
2.2.3.4	Waveshifter PO issued	29Jan08			Ž.					
2.2.4.1.4	Toll blending contract signed	29Jan08	<u> </u>		<u> </u>					
2.2.3.5.1	Waveshifter production and delivery begins	30Jan08			Ž,					
2.2.3.5.4	Waveshifter production 15% completed	30Sep08			2	Z				
2.2.3.5.5	Waveshifter production completed	29Sep09				Z	Z			
2.2.1.5.1	Mineral oil production and delivery begins	01Mar10					Ž.			
2.2.2.5.1	Pseudocumene production and delivery begins	02Aug10					Ž			
2.2.4.3.5	Scintillator blending begins	16Aug10					Ž			
2.2.3.7	Stadis-425 PO issued	01Oct10					2	Z		
2.2.1.5.5	Mineral oil production and delivery 25% completed	15Oct10					2	<u>~</u>		
2.2.3.9	Stadis-425 delivery completed	28Oct10						<u>"</u>		
2.2.4.3.6	Scintillator production for superblock 1 completed	21Jan11						<u>Ž</u>		
2.2.5.3.39	Scintillator delivery for first superblock completed	09Feb11						Ž.		
2.2.2.5.5	Pseudocumene production and delivery 25% completed	15Feb11						X		
2.2.4.3.7	Scintillator production for superblock 2 completed	28Apr11						Ž.		
2.2.1.5.6	Mineral oil production and delivery 50% completed	10Jun11						<u></u>		

Schedule: WBS 2.2 (cont.)

Nova Project

WBS x.2- Nova_Milestones_Liquid_Scintillator Milestone Gantt Chart

Activity ID			FY06	FY07	FY08	FY09	FY10	FY11	1 FY12 FY	FY13
	Milestone Description	Date	Q1 Q2 Q3 Q4							
2.2.4.3.8	Scintillator production for superblock 3 completed	02Aug11						Ž.		
2.2.2.5.6	Pseudocumene production and delivery 50% completed	25Aug11						Ž,		
2.2.4.3.9	Scintillator production for superblock 4 completed	08Nov11							<u>X</u>	
2.2.1.5.7	Mineral oil production and delivery 75% completed	07Feb12							Ž	
2.2.4.3.10	Scintillator production for superblock 5 completed	23Feb12							X	
2.2.2.5.7	Pseudocumene production and delivery 75% completed	13Mar12							*	
2.2.4.3.11	Scintillator production for superblock 6 completed	31May12							×	
2.2.4.3.12	Scintillator production for superblock 7 completed	10Sep12							Z,	\$
2.2.1.5.8	Mineral oil production and delivery completed	28Sep12							2	Z
2.2.2.5.8	Pseudocumene production and delivery completed	28Sep12							2	Z
2.2.4.3.90	Scintillator production for all superblocks completed	07Nov12								×.
2.2.5.3.40	Scintillator delivery for all blocks completed	21Nov12								Ž.

CD-3a Approval for Purchase of Waveshifters in FY08/FY09

- Waveshifters to be purchased beginning in FY08 which requires CD3a approval
 - Only vendor for waveshifters
 - Another vendor will require facilities development, most likely in China
- Rolled up cost
 - Cost are always with contingency, burdened with all overheads, escalated.
- Risk
 - The project will suffer a delay if waveshifters not purchased beginning in FY08 because of the long lead time required for a new supplier to be developed

Summary

- Technical
 - Commercial Toll blending of 3.9M gallons of liquid scintillator
- Cost
- Schedule
 - Working on it
- 3a items & their cost
 - waveshifters